
46 The Delphi Magazine Issue 43

Delphi, Dates And
The Year Two Thousand
by David Sutherland

This article consists of three
sections. The first is a look at

the general issues surrounding the
year 2000. In the second I’ll
describe how Delphi and Inprise
database products handle any
issues. The third section looks at
some date handling problems and
how they are solved using Delphi.

The Millennium Bug
In June 1986 an article appeared in
the magazine COMPUTING SA, writ-
ten by a South African named Chris
Anderson. The headline read: ‘The
Timebomb in Your IBM Mainframe
System’. What he was referring to
was the fact that date fields, as
standard, only contained a two-
digit year field, the century always
defaulting to 19. Chris Anderson
stated in the article that ‘No terror-
ist organisation or disillusioned
hacker could plant a more skilful,
destructive or international
booby-trap’.

At the time, very little interest
was aroused by this article, except
in IBM, who threatened legal
action. IBM took a simple stance:
‘This problem is fully understood
by IBM’s software engineers who
anticipate no difficulty in program-
ming around it ... Put simply, then,
the position is as follows: those
users still working a two-digit field
can continue to do so, always bear-
ing in mind the need to convert to a
four-digit field by the year 2000’.

So then, what did the software
industry do about it? Well, the vast

majority of companies took the
first bit of IBM’s advice, but
ignored the second vital part of it,
and so twelve years later, we are
reading Millennium Bug doom and
gloom stories everywhere.

Software issues are only a part of
the problem: many of the micro-
processors in use today both in
computers and embedded sys-
tems can only support the two-
digit date field. In many ways, the
issue of computers is only one of
cost: simply test the hardware and
replace if required. After all, in
personal computing, the average
machine is obsolete after six
months (in technology terms
anyway). Embedded systems pose
further problems: what if the chip
controlling the lift fails at 0.01am
on 1 January 2000, or even worse
the kidney dialysis equipment. But
such discussions are not for this
article, you will be relieved to
know! No, what concerns us here is
the impact on the applications that
we as developers have produced.

In the United Kingdom, the CSSA
(the UK trade association for soft-
ware, IT services and information
industries), the NCC and the UK
Corporate Software User Associa-
tion have come up with a draft
document Definition of Year 2000
Software Product and System
Testing Best Practice. This includes
the following definition of Year
2000 conformity: ‘Year 2000 Con-
formity shall mean that neither
performance nor functionality is

affected by dates prior to, during
and after the year 2000’. It goes on
to detail a number of general rec-
ommendations and specific tests
based on the four rules defined by
the British Standards Institute.

First, no value for the current
date will cause any interruption in
operation. Second, date-based
functionality must behave consis-
tently for dates prior to, during
and after year 2000. Third, in all
interfaces and data storage, the
century in any date must be speci-
fied either explicitly or by unam-
biguous algorithms or interfacing
rules. Lastly, year 2000 must be
recognised as a leap year.

Having just read that set of rules,
how many of us can state, hand on
heart, that all our applications
fully comply with them?

Inprise Products
Inprise have made available a large
amount of material on the subject
of the year 2000. There is an excel-
lent table at www.inprise.com/
devsupport/y2000/ which shows
that Interbase, Paradox and dBase
do not have a problem with the
year 2000. Paradox and dBase will
have a problem on 1 January
10,000 and Interbase on 12 Decem-
ber 5941, but I can’t envisage that
as a problem for any developer
reading this article. Let a future
generation of developers worry
about that (sounds familiar that
statement, doesn’t it...).

There is, however, one impor-
tant adjustment that you should
make to ensure the proper display
of dates in the desired four figure
configuration. This is to adjust the
short date format from dd/mm/yy to
dd/mm/yyyy. This can be achieved
in two ways.

Firstly, you can request the user
to manually adjust the short date
format. In a Windows 3.1 machine
choose the International icon in

Function Modify2000(const Value: TdateTime): TdateTime;
Var Year,Month,Day : Word;
Begin
Result := Value;
DecodeDate(Result,Year,Month,Day);
If Year <1950 then Result := EnCodeDate(Year+100,Month,Day);

end;

➤ Above: Listing 1 ➤ Below: Listing 2

If Pos('yyyy',ShortDateFormat)=0 then
ShortDateFormat:=Copy(ShortDateFormat,1,Pos('yy',ShortDateFormat))+'yy'+
Copy(ShortDateFormat,Pos('yy',ShortDateFormat)+1,Length(ShortDateFormat));

March 1999 The Delphi Magazine 47

the Control Panel and then click on
the Date Format Change button and
set the Century option to long.
Windows 95, 98 and NT4 users
should select the Regional Set-
tings icon in the Control Panel,
click on the Date tab and amend the
Short Date format to dd/mm/yyyy.

An alternative solution, and in
my opinion a better one in that it
doesn’t rely on end users’ ability to
find their way round the system, is
to set the short date format in the
initialisation of your application.
The code shown in Listing 1 will set
the format to four figure year set-
tings, while respecting the underly-
ing regional date setting.

This overrides the global setting
in SysUtils, which is read from the
registry and will ensure that the
application consistently uses four-
digit years, regardless of the Win-
dows setting. It does not, however,
change the ShortDateFormat in the
registry and so if you make use of
the TDateTimePicker control, this
still shows the date using the set-
ting in the registry. To solve this
problem, you either make use of an
alternative date edit control or use
the following function:

DateTime_SetFormat(
DateTimePicker.Handle,
’dd/mm/yyyy’);

Example code is for use in the
United Kingdom. To make use of
this function you need to add the
Commctrlunit into your usesclause.

While it is desirable to force your
applications’ users to use four-
digit year date entry, the Inprise
website listed above does show a
way of handling two-digit year
entry, providing that your applica-
tion only has to deal with a hun-

dred year date entry
range and you can afford
to pre-define that range.
The code in Listing 2 con-
verts any date before
1950 (in Delphi terms
any two- digit year less
than 50) to a date 100
years later. For use with
a data- aware control,
the function can be used
to convert a date typed
in, using a TTable.BeforePost event
handler.

The function and procedure in
Listing 3 can be used in all versions
of Delphi. Delphi 4 came with a new
variable to control the interpreta-
tion of two-digit years, the
TwoDigitYearCenturyWindow.

TwoDigitYearCenturyWindow
This is a global variable, which is
used by StrToDate and StrToDate
Time functions when converting a
string to a date format. The value of
this variable, if non-zero, is sub-
tracted from the current date to
form the pivot used to determine
whether a year entered is in the
current century or the next. Again
you can only use this if your
desired date range is 100 years or
less. It replaces the Modify2000
function shown above. To best
illustrate this, look at Table 1.

This makes the task in Delphi 4 of
handling two-digit date entry
easier, and has the advantage over
the method required for early ver-
sions of Delphi that you only have
to set one global variable. It is no

➤ Listing 3

real substitute for updating legacy
applications to require four-digit
year entry throughout, however.

Dates In Applications
Many of the applications that I
develop import data from a
number of sources. These often
provide the date embedded within
long strings and in a number of for-
mats. An initial task, therefore, is
to extract and manipulate these
dates.

One application is a tracking and
invoicing system. It takes header
information about an order, for
invoicing purposes, from one
source in comma separated vari-
able format and then adds tracking
information about these orders.
This information is received in
fixed format text files.

The screenshot in Figure 1
shows the search screen, where
you can see both the raw data and
the extracted date and times.

The date information for the
header panel is held within the
manifest number, in the format
ddmmyyyy and is extracted using the
code in Listing 4.

This performs the task and as
the raw data already had four-digit
years needed no further work to
make it year 2000 compliant.

The date information for the
details was somewhat harder to
deal with. The tracks are gener-
ated on a VAX VMS system and

Current Year TwoDigitYearCenturyWindow Pivot yy = 03 yy = 50 yy = 68

1998 0 (default) 1900 1903 1950 1968

2002 0 (default) 2000 2003 2050 2068

1998 50 1948 2003 1950 1968

2000 50 1950 2003 1950 1968

2002 50 1952 2003 2050 1968

2020 50 1970 2003 2050 2068

2020 10 2010 2103 2050 2068

➤ Table 1

➤ Figure 1

Procedure Tform1.Table1BeforePost(DataSet : TdataSet);
Var Tempdate : TdateTime;
Begin
Tempdate := Table1.fieldbyname('date_Field).asDateTime;
Tempdate := modify2000(tempdate);
Table1.fieldbyname('date_field').asdatetime := tempdate;

end;

48 The Delphi Magazine Issue 43

come in the format yydddtt, where
ddd is the number of days that has
elapsed since the beginning of the
year. This was dealt with using the
code in Listing 5.

You can see from this code that
it uses an epoch setting to convert
a two-digit year into a four digit
year. However, it can only handle
dates in a hundred year range
between 1951 and 2050. It also uses
the Adrock dates classes unit for
the function AddDays. This function
allows you to add a number of days
to a date to obtain a new date. The
main problem with constructing
these procedures was the need to
ensure that the data was of the
right type at any one time.

Another important area of my
work concerns the calculation of
transit times, ie how long does a

procedure TfrmInvoice.btnDespDateClick(Sender: TObject);
var
Year, Month, Day, DespatchDate, Store : string;
Save_Cursor:TCursor;

begin
Save_Cursor := Screen.Cursor;
Screen.Cursor := crHourglass;
with tblHeaders do begin
DisableControls;
try
First;
while not EOF do begin
{ Process each record here. Splits the string into the relevant chunks }
Day := Copy(tblHeadersDate2.AsString,1,2);
Month := Copy(tblHeadersDate2.AsString,3,2);
Year := Copy(tblHeadersDate2.AsString,5,4);
Store := Copy(tblHeadersCustomerRef.AsString,1,3);
tblHeaders.edit;
{Combines the test strings into the appropriate format with separators}
DespatchDate := Day +'/'+ Month + '/'+ Year;
{converts string back to a date while casting datafield as a datetime}
tblHeadersDespatchDate.AsDateTime := StrToDateTime(DespatchDate);
tblHeadersStoreCode.AsString := Store ;
tblHeaders.post;
Next;

end;
finally
EnableControls;
tblHeaders.Active := True;
Screen.Cursor := Save_Cursor; { Always restore to normal }

end;
end;

end;

procedure TfrmUpdate.btnExtractClick(Sender: TObject);
var
Year, Hours, Minutes, Days : string;
DayInt, EpochSetting, YearInt: integer;
Save_Cursor:TCursor;

begin
Save_Cursor := Screen.Cursor;
Screen.Cursor := crHourglass; { Show hourglass cursor }
// uses for manipulatin of two digit years
EpochSetting := 50;
with tblStatus do begin
DisableControls;
try
First;
while not EOF do begin
{ Process each record here }
Year := Copy(tblStatusTrackDateTime.AsString,1,2);
Days := Copy(tblStatusTrackDateTime.AsString,3,3);
Hours:= Copy(tblStatusTrackDateTime.AsString,6,2);
Minutes:=Copy(tblStatusTrackDateTime.AsString,8,2);
DayInt := StrtoInt(Days) -1;

YearInt := StrtoInt(Year);
tblStatus.edit;
if EpochSetting > YearInt then
Year := '1/1/19'+ Year

else
Year := '1/1/20' + Year;

tblStatusTrackDate.AsDateTime :=
StrToDateTime(DateToStr(AddDays(DayInt,
StrToDateTime(Year)))+' '+Hours+':'+Minutes);

tblStatusTrackTime.AsDateTime :=
StrToTime(Hours + ':' + Minutes);

tblStatus.post;
Next;

end;
finally
EnableControls;
tblStatus.Active := True;
Screen.Cursor := Save_Cursor;

end;
end;

end;

parcel take to get from A to B. This
application again makes use of the
Adrock date classes unit. In this
case (see Listing 6), the function

used is ReturnBusinessDaysBetween
Dates, which calculates the
number of business days that fall
between the first date and the
second date. If the second date is
later than the first then the result
will be negative. The business days
are days that do not fall on a Satur-
day, Sunday or appear in the holi-
day list. The holiday list is a string
list to which you can add or
remove dates either at design-time
or runtime. See www.adrock.com
for more details of these routines.

This procedure first of all calcu-
lates the transit time for two sepa-
rate parts of the order cycle. It
then calculates what band the
total transit time falls into, that is:
under 5 days, between 5 and 10
days, between 10 and 15 days,
between 15 and 20 days, or over 20
days.

➤ Listing 5

➤ Listing 4

➤ Figure 2

March 1999 The Delphi Magazine 49

procedure TfrmData.tblTransitAfterEdit(DataSet: TDataset);
begin
tblTransitTransit.Value :=
ReturnBusinessDaysBetweenDates(tblTransitDelDate.AsDateTime,
tblTransitRecDate.AsDateTime);

tblTransitReceived.Value :=
ReturnBusinessDaysBetweenDates(tblTransitRecDate.AsDateTime,
tblTransitOrderDate.AsDateTime);

tblTransitTotalTransit.Value :=
ReturnBusinessDaysBetweenDates(tblTransitDelDate.AsDateTime,
tblTransitOrderDate.AsDateTime);

if tblTransitTransit.Value <= 5 then
tblTransitDays5.Value := 1;

if (tblTransitTransit.Value <= 10) and (tblTransitTransit.Value >5) then
tblTransitDays10.Value := 1;

if (tblTransitTransit.Value <= 15) and (tblTransitTransit.Value > 10) then
tblTransitDays15.Value := 1;

if (tblTransitTransit.Value <= 20) and (tblTransitTransit.Value > 15) then
tblTransitDays20.Value := 1;

if (tblTransitTransit.Value > 21) then
tblTransitDays21.Value := 1;

end;

➤ Listing 6

This pre-processing of the data
to decide what band a particular
transaction fell into was needed for
reporting purposes. Calculating it
at data entry time vastly simplified
the task of producing the report.
This was due to the difficulty of
performing calculations such as
totals, percentages and averages
and so on upon data calculated at
the time of running the report, as
opposed to data available at
design-time.

Figure 2 is a screenshot taken
from the demonstration program
included with the TAdrockDateClass
which shows a number of the
functions available in this product.

The problems encountered at
first in designing the reports
reminded me of the importance of
ensuring that when you are under-
taking the analysis work before
starting to set up data structures
and so on (you do this don’t you!)
you need to account for the
desired output from the system, so
that these requirements are taken
into account at initial design-time
before you start coding.

Conclusions
I trust that this article has enabled
you to gain an understanding of the
issues behind the year 2000 and of
the rules for determining whether
an application can be said to be
year 2000 compliant.

In addition, we’ve covered the
importance of taking into account
the problems faced when having to
integrate data exported by other
applications, where you normally
have no control over the data
structure employed, and the
methods that you can employ to

overcome such issues in the areas
of dates and times.

David Sutherland is a professional
information provider, developer
and writer and can be contacted
at davesuth@bigfoot.com

www.itecuk.com
News, contacts, what�s coming,

back issues, samples and more

	The Millennium Bug
	Inprise Products
	TwoDigitYearCenturyWindow
	Dates In Applications
	Conclusions

